Our Team

Meet our team

GDA is built around a core team of mathematicians, data scientists, and professional software developers. Our team is deeply curious about a diverse set of scientific and technical questions in mathematics, physics, biology, data analysis, statistics, computer science, and engineering. Our work requires broad horizons, intellectual flexibility, and passion.


John L. Harer

CEO & Subject Matter Expert

John Harer is CEO and Subject Matter Expert at Geometric Data Analytics (GDA) and Professor of Mathematics, Computer Science, and Electrical and Computer Engineering at Duke University. He founded GDA to support the application of methods of geometric and topological data analysis to a wide variety of problems in the commercial and government sectors.

Dr. Harer is an expert in the application of methods ranging from geometry and topology to data of various types. He is one of the creators of Topological Data Analysis (TDA), a new field of applied mathematics that is revolutionizing how “big data” can be analyzed and managed. TDA has been applied to problems in agent tracking, robust network design, gene regulatory network discovery, cybersecurity, intelligence analytics, and many others.


Paul Bendich

Chief Scientist

Paul Bendich is an Associate Research Professor of Mathematics at Duke University and the Associate Director for Undergraduate Research in the Information Initiative at Duke. He received his Ph.D. in Mathematics from Duke in 2008 and held postdoctoral positions at the Institute for Science and Technology Austria and Penn State. 

Dr. Bendich’s doctoral work laid some of the early theoretical foundations for topological data analysis (TDA). Since then, he has been at the forefront of the integration of TDA with more standard machine learning and statistical techniques. This work has found wide application in vehicle tracking, brain imaging, and image simplification, among many other areas.

Dr. Bendich oversees all scientific efforts at GDA. Through his affiliation with the Information Initiative at Duke, Dr. Bendich has developed broad and deep expertise across the field of modern data analysis, and he has frequently been the leader of interdisciplinary and vertically integrated teams.


Abraham Smith

Senior Mathematician

Abraham Smith is an Associate Professor in the Department of Mathematics, Statistics and Computer Science at University of Wisconsin-Stout, Wisconsin’s Polytechnic University. He received his Ph.D. in Mathematics from Duke University in 2009 and held postdoctoral research positions at Fordham University and McGill University. 

Dr. Smith specializes in using geometric insight to reformulate open-ended data-analysis and machine-learning questions into firm mathematical theories, and then optimize those mathematical theories into concrete and efficient code. Dr. Smith’s approach stems from a background in geometric differential equations and integrable systems—systems that predict changes and interactions in the physical world. At McGill University, Dr. Smith explained the high-dimensional structure of these systems through the support of the National Science Foundation (NSF) and the Mathematical Sciences Research Institute (MSRI). Dr. Smith is an avid scientific programmer and Linux administrator with long-time expertise across the entire software stack, and he uses these skills to design and implement parallel computing infrastructure for research code and production workflows at GDA.


Anastasia Deckard

Senior Scientist & Systems Architect

Dr. Deckard received her B.S. in Computer Science from CSU Fullerton in 2008 and her Ph.D. in Computational Biology & Bioinformatics from Duke University in 2014. She has worked as an application and database developer, a researcher in a computational biology lab, a Visiting Assistant Professor in the Mathematics Department at Duke University, and a computational scientist at a biotech startup.

Anastasia Deckard’s projects at GDA have included early detection of public health incidents, constructing complex adaptive systems, and data-driven discovery in complex domains. This work has led her through diverse fields such as mathematical modeling, network theory, optimization algorithms, formal languages, bioinformatics, and systems biology. She has also worked extensively on building software for algorithm validation, analysis pipelines, and data collection, integration, validation, and management.


Ashlee Valente

Director of Business Development

Dr. Ashlee Valente is a computational biologist by training, with extensive experience in stakeholder engagement. Her graduate and postdoctoral work focused on applied biomarker discovery working closely with clinicians to design fieldable diagnostic tests. Following her postdoctoral work, Dr. Valente joined the industrial computational biology and data science community, leveraging genomics and IoT data in agriculture, biofuel, and food and beverage fermentation, including engaging with early customers and co-inventing a fermentation monitoring device now on the market. This early prototype included a cloud deployed monitoring and analytics service deployed on AWS. At GDA, Dr. Valente has participated in a comprehensive, selective, local startup accelerator program for business development training, networking, and assistance, and led customer development efforts on multiple SBIRs, and currently leads customer development and business development efforts.


Francis Motta

Senior Mathematician

Francis Motta is an Assistant Professor at Florida Atlantic University. He received his Ph.D. from Colorado State University where his research focused on applied dynamical systems, pattern formation, and topological data analysis (TDA). After completing his Ph.D., Dr. Motta worked as a visiting assistant professor at Duke University where he developed computational methods at the interface of TDA and machine learning and worked closely with systems biologists modeling the dynamics of gene regulatory networks. Dr. Motta continues to advance methods that strengthen the applicability of TDA tools to complex, large-scale, and dynamic data; and develop mathematical models of gene regulation to better understand the genetic mechanisms driving dynamic phenotypes, including in host-pathogen interactions.

GA-1_full_blurred (1)

Gabrielle Angeloro

Data Scientist 

Gabrielle Angeloro received a B.S. in Mathematics from SUNY Geneseo and a M.S. in Mathematics from Iowa State University. While at Iowa State, she developed a Python package implementing persistence landscapes: a vectorization scheme for persistent homology. Gabrielle's current research interests are in the intersection of topological tools and deep learning.


Gary Koplik

Senior Data Scientist and Data Visualization Engineer

Gary Koplik received a B.A. in Economics and Mathematical Science from Colby College and a M.S. in Economics and Computer Science from Duke University. His research has included topics such as historical market responses to unemployment reports, summarizing variable interactions in large databases, and the incidence of rare diseases in health systems. At GDA, he focuses on the geometry and coverage of non-stationary sensor networks, as well as on building company-wide static and dynamic visualization skills.


James Polly

Senior Scientist

James Polly received his Ph.D. in 2016 from the City College of New York, where his research focused on midlatitude cyclones and the role these storms play in Earth's atmospheric energy budget. His research experience also includes numerical methods and simulation of fluids, and he has aerospace industry experience in propulsion and structural analysis.

Dr. Polly is able to leverage multiple sources of remote sensing, reanalysis, and model data to inform a variety of research questions, and problems relating to the atmosphere and ocean are among his primary research interests.


Jay Hineman

Chief Solutions Architect

Jay Hineman received his Ph.D. in Mathematics from the University of Kentucky in 2012. He has worked as a researcher and instructor at the University of Kentucky and Fordham University. Dr. Hineman has extensive knowledge of numerical simulation and analysis of liquid crystals, ion electrochemistry, and biomembranes; and holds a graduate certificate in computational fluid dynamics from the University of Kentucky. Many of these topics have rich geometric interpretations (e.g., harmonic maps and curvature flow) applicable to broader questions about data. In addition, he is experienced in configuring OS and hardware to build and run large scale scientific code.

At GDA, Dr. Hineman has applied his mathematical and computational background to integrating topological data analysis tools with machine learning techniques. He has focused on the domains of data fusion for targeting and control of system of systems for agile logistics and military medicine. He also serves as an adjunct instructor in the ECE Department at Duke University, where he leads classes about the implementation of machine learning and reinforcement learning at scale.


Ken Roth

Facility Security Officer

John “Ken” Roth is GDA's FSO. His 38 years of Air Force and Industry security-related work experience has taken him to most regions of the world, with the latest prior stint in Austin, Texas. In addition to his Master’s in Education and Bachelor’s in History, he also holds NCMS Industrial Security Professional certification and is a member of the NCMS National ISP board.


Kenneth Ball

Senior Mathematician

Dr. Ball completed his Ph.D. in Mathematics in 2013 at North Carolina State University, where he studied numerical simulation of mechanical systems with variational integrators. He has held postdoctoral positions at the US Army Research Lab (in coordination with the University of Texas at San Antonio) and the US EPA where he researched machine learning for brain-computer interfaces and computational toxicology, respectively.

Dr. Ball offers expertise in mathematical modeling, simulation, and machine learning in a variety of problem domains, along with formal expertise in manifold theory, differential geometry, and dynamical systems. He has developed analytical tools to process and interpret behavioral and physiological responses. He has applied mathematical tools to the analysis of complicated logistics and systems-of-systems problems, behavior predictions, signal/detection modelling, and food/beverage industry processes. He leads a research team investigating the use of topological and image processing tools to support experimental analyses in the agricultural domain. He is especially interested in the interpretation of meaningful and useful features in complicated real-world datasets.


Kevin McGoff

Senior Mathematician

Kevin McGoff is an Associate Professor of Mathematics at the University of North Carolina at Charlotte. He received his Ph.D. in Mathematics at the University of Maryland, where he specialized in dynamical systems and probability. During his time as a Visiting Assistant Professor at Duke University, he diversified his portfolio to include research in statistics and systems biology, including gene regulatory networks and epidemiology.

Dr. McGoff’s research interests involve understanding dynamical systems from several perspectives. From the probabilistic perspective, he analyzes the long-term behavior of systems whose rules of evolution are drawn at random. Taking a more statistical point of view, he seeks to provide rigorous performance bounds on statistical procedures for data with long-range dependence. At GDA, he focuses on control of stochastic dynamical systems.


Megan Hohenstein Bongartz

Director of Operations

Megan creates processes and policies to help the team work as productively and effectively as possible. She is the administrative point of contact for contracts, ensuring reporting, security, and financial requirements are met. Megan also directs human resources activities including performance reviews, employer-sponsored benefits administration, and payroll processing. 

Email Megan with questions about careers, business opportunities, or the website: megan.hohenstein@geomdata.com.


Nirav Patel

Data Scientist 

Nirav Patel received a B.S. in Economics with a specialization in Advanced Mathematical Methods from New York University and a M.S. in Economics and Computer Science from Duke University. Before starting graduate school, he worked as an applied econometrics research analyst at the Brookings Institution in Washington, DC. At Duke, Nirav built mathematical economic models to study the reciprocal relationship between economic inequality and political representation. His research has spanned areas such as spatial and development economics within the context of Sub-Saharan Africa. Broadly, Nirav has extensive experience applying causal inference and machine learning techniques to generate insights from complex data including large-scale survey microdata, ultra high-resolution satellite data, and unstructured time-series data, among others. Nirav's current research interests are in computational game theory and deep learning.


Steve Haase

Subject Matter Expert

Dr. Steve Haase is an Associate Professor of Biology and Medicine (Division of Infectious Disease) at Duke University. He received his Ph.D. in Genetics from Stanford University in 1993. His research interests include gene regulatory network structure/function, biological clocks, and the dynamics of host-pathogen interactions. At GDA, he provides infectious disease expertise and works directly with epidemiologist stakeholders.


Tessa Johnson

Data Scientist

Tessa Johnson received a B.S. in Applied Mathematics and Statistics from Texas A&M University and a M.S. in Statistical Sciences from Duke University. She has broad research interests including applications of statistical modeling for forensics data and development of improved feature selection methodology for complex feature sets. During her graduate studies, she worked on applying Bayesian methodology to Bioinformatics data and exploring the evolution of Dynamic Social Networks in a Bayesian framework. At GDA, her research focuses on the implementation and application of novel topological algorithms and fusion techniques for high-dimensional data arising from multiple sensing modalities.